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Convergence of Galerkin Approximations for the 
Korteweg-de Vries Equation* 

By Garth A. Baker, Vassilios A. Dougalis and Ohannes A. Karakashian 

Abstract. Standard Galerkin approximations, using smooth splines on a uniform mesh, to 
1-periodic solutions of the Korteweg-de Vries equation are analyzed. Optimal rate of 
convergence estimates are obtained for both semidiscrete and second order in time fully 
discrete schemes. At each time level, the resulting system of nonlinear equations can be solved 
by Newton's method. It is shown that if a proper extrapolation is used as a starting value, 
then only one step of the Newton iteration is required. 

1. Introduction. This work is aimed at deriving rate of convergence estimates for 
standard Galerkin approximations, using smooth splines on a uniform mesh, to 
1-periodic solutions of the Korteweg-de Vries equation. 

For 0 < T < x, a function u: [0, 1] X [0, T] R is sought satisfying 

au au a3u 
0 t+ u ax + axu = ?, on (0, 1) X (0, T], at 3x ax 3 

(O,t) . (l,t), j=0,1,2;te[0,T], 
ax' ax' 

u(x,0) u?(x), x G [0, 1], 

where uo(x) is a given 1-periodic function. 
It will be assumed that (1.1) has a unique solution, sufficiently smooth to 

guarantee the convergence results below. Results on existence, uniqueness and 
regularity of solutions of this problem have been obtained, e.g., in [3], [4], [7], [10]. 

A nonstandard dissipative Galerkin method yielding the optimal rate of conver- 
gence for the semidiscrete approximation for (1.1) using arbitrary C2(0, 1) periodic 
piecewise polynomial functions has been analyzed by Wahlbin [14]. A nonstandard 
Galerkin method, yielding optimal rate of convergence estimates for both semidis- 
crete and second order accurate in time fully discrete schemes has been analyzed by 
Winther [15]. 

For numerical work concerning the Korteweg-de Vries equation, cf. Alexander 
and Morris [2] for dissipative and nondissipative Galerkin approximations to (1.1). 
For finite difference schemes cf. e.g. [6], [13], [17]. For spectral methods cf. e.g. [1], 
[5], the appendix of [7], [8], [9]. See also the references of [16]. 

It is stated in [14] that the semidiscrete approximation for the standard Galerkin 
method using smooth periodic splines of order r > 4 gives the optimal convergence 
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rate O(h') in L2(0, 1). For the convenience of the reader we supply a proof of this 
here. We use some key estimates of Thomee and Wendroff [12] for some associated 
linearized problems. We then analyze a fully discrete Crank-Nicolson type ap- 
proximation to u. Among the results obtained are the existence, uniqueness, stability 
as well as the optimal convergence rate of the fully discrete approximation. At each 
time level, the resulting system of nonlinear equations can be solved by Newton's 
method. It is shown that if a proper extrapolation is used as a starting value, then 
only one step of the Newton iteration is required to preserve the stability and 
optimal rate of convergence of the scheme. 

Some of the results above hold provided conditions relating the sizes of k and h, 
the time and space discretization parameters, respectively, are satisfied. Specifically, 
for the proof of uniqueness of the solution of the fully discrete Crank-Nicolson 
scheme, a condition of the form kh- 1/2 < c, with sufficiently small c independent of 
k and h, must hold. Also, for the convergence of Newton's method, a condition of 
the form kh-3/4 < c, c sufficiently small, is required. We point out that this is a very 
weak limitation on the time step k and is certainly satisfied in practice. Note that 
most finite-difference schemes, cf. e.g. [13], [17], require a severe restriction on k of 
the form kh -3 < c. However Winther's [15] scheme is unconditionally stable. 

An outline of the paper is as follows: Section 2 is devoted to establishing notation 
and the statements, in the form of theorems, of the results obtained. In Section 3, the 
proofs of those results are given. 

2. Rate of Convergence Estimates. We next establish the notation to be used 
throughout the paper and state the main results obtained; the proofs will be given in 
Section 3. 

For real s and 1 - p < x, W.(0, 1) will denote the Sobolev space of real valued 
functions on (0, 1), the norm of which we denote by 11 -11 W.(O 1) For convenience, for 
p = 2 we shall write 1 1 I-1 = 11 w2s(O,1). The inner product and norm on W2?(O, 1) 
L2(0, 1), we denote by (*, ) and j1 *1, respectively. For X a normed linear space with 
norm 1 x, and u: [0, T] X measurable, we define 

IIUIILP(O,T;X) =IIIu(t)Ilxdt , 1 s p < x, 
and 

|JU||L?(O,T;X) = ess sup ||u( t )IIX. 

For integer r > 4, Sh, will denote the space of 1-periodic smooth splines of degree 
r - 1 on a uniform mesh of width h = N-1 on [0, 1]. Sh, possesses the well-known 
approximation properties: 

If v is 1-periodic and v E W22f(0, 1) n W.'(0, 1), then there exists a X E Sh, such 
that 

s-I 
(2.1) 1 hjllyv -Xl chs-lllls, 1 s s s r, 

j=0 

and 
m-I 

(2.2) 2 h'llv - Xllwj(o,1) < chmIvlvw.-(o,j), 1 s m s r 
i=? 
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Also, for all X E S,,, the following "inverse assumptions" hold: 

(2.3a) IIXII# < chifa)IIXIIa, 0 S a < /B < r - 1, 

(2.3b) IIXlIwS(o,1) < ch-(s`'I2)IJXII, 0 < s < r - . 

c above is independent of h and throughout the paper will denote a generic 
constant, not necessarily the same in any two places. 

The following theorem defines the semidiscrete Galerkin approximation to u(x, t), 
the solution of (1.1), and gives an error estimate which has optimal rate of 
convergence. In what follows we let Puo denote any conveniently chosen element of 
Sh (e.g. L2-projection, interpolant, etc.) which satisfies, for sufficiently smooth u?, 

(2.4) IIPU?- < Ch. 

THEOREM 2.1. There exists a unique mapping Vh: [0, T] -. Shr satisfying 

(Vht + VhVhX + VhXXX, X) = 0, VX E Sh, t (E (0, T], 
(2.5) LVA() Pu0. 

Moreover, if u is sufficiently smooth, then for some constant c depending only on u and 
T, 

I/U - Vh//L(0,T;L2(0 1)) ? ch LI 

For J a positive integer, let k be such that kJ = T. For v: [0, T] -> L2(0, 1) 
continuous, we define 

vn = V(x, nk), avn = k-(vn+l - Vn) 

and vn+1/2 n+1 + v"), for n 0 O, 1,...,J - 1. The Crank-Nicolson fully dis- 
crete approximation is defined in the following way: seek a sequence {U"}J=o C Sh 
satisfying 

(aun + un+112un+112 + Un"+1l/2, X) -? 0, r hn 0 , 
(2.6) {( U U Lx + xxx!, ) VX E= Sh, n =0, 1,... ,J-, 

LU? = Pu?. 

We have the following 

THEOREM 2.2. There exists a sequence {Un}J=0 satisfying (2.6). Also, for k, h 
sufficiently small and for some constant c = c(u, T) 

max u-U < c{h r+ k2}. 

In addition, there exists a positive constant -yo y(u, T) such that if kh 1/2 < 

then the sequence {Un}=0 is unique. O 

We note that, by periodicity, {Un}J=0 can be equivalently defined by 

(u X) (un+ 1/2 ]2, xx) + (Un+ 1/2, x) = 0, 

(2.6') VX E Shr, n = 0,...,J 1, 

U0 = Pu0. 

Whenever convenient, either form shall be used. 
We propose to solve the nonlinear equations (2.6') using Newton's method. In 

practical situations this process is terminated after a finite number of iterations. 
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With this in mind, we define the following scheme: Let {Io, jl,. . ,jj} be a collection 
of integers with jn > 1, 0 < n < J (we can actually take jn 1). Let LJ7 be an 
approximation to U', and let U ' be the exact solution of the nonlinear system 
(2.6') with U'" replaced by Un i.e., let un+' be given for 0 < n < J - 1 by 

(2.7) (& 1-U nX+- 
n (fj 

k 
n+l + Cln]2 Xx 

2 (, xxx' VX 

where we set 

(2.8) O = U? = Pu?. 

Since we cannot solve (2.7) exactly, we shall approximate its solution using 
Newton's method. For this, let UClJn be an initial approximation to Un+I obtained 
in the following way: For n = 0, U0' is the solution of the linear system 

(2.9) (CIO' - UO X) + k(Uo[Uo1]x, x) + k([U0o], xr) - VX S 

and for n 2 1 

(2.9') 2n+1 _- 2UJ - 

Then Newton's method for obtaining UJj I, an approximation to UO' 1, is: 

(2.10) (Q +1 k 
[UnL- 

I k) ([(Cjfl? + Cjn]Q n+j', X ) 

8 (. [UJ 
2 

-[l,n] 2, Xx )+ ( n _ [n] xJ 

VX E Sh, 0 <j j--n+ - 1. 
We have 

THEOREM 2.3. Suppose j,n > 1, Vn and h, k are sufficiently small. Then, there exists 
a constant y1 = yl(u, T) such that if kh-3/4 < Y,, there exists a unique sequence 

{J}JI=o given by (2.8), (2.9), (2.9') and (2.10). Moreover, there exists a constant c 
independent of h, k and the integersjn such that 

max || U' -U j'll ?c{k2+ hr}. D 

Thus Theorems 2.2 and 2.3 show that maxO,,,j 11 un-UJJ 11 = O(k2 + hT). 

3. Convergence Proofs. In [12], V. Thomee and B. Wendroff consider the follow- 
ing initial value problem (D = a/ax): 

{au 
(3.1) = (xI t, D E Pa(x, t)D'u, x E R, t > O, 

u(x,0) = u?(x). 

m is a positive integer such that r > (m + 2)/2; the coefficients and the initial 
value are real-valued sufficiently smooth 1-periodic functions in x. Moreover, the 
operator L = L(x, t, D) is assumed to be semibounded, so that 
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Writing the differential operator L in the form 

L(x, t, D)u = De'(P,,8DO u) 
a<r 
13<r 

they introduce the bilinear form, 

(3.3) B(v, w) = :E (l)"(P,0D,8v, Daw), 
aft 

and consider the Galerkin problem of finding v(t) E Shr such that 

F av 
(3-4) (at x)= ( vEht0 

V (0) = Ua 

where uo is the quasi-interpolant of uo (cf. [12, p. 1062]). They obtain the following 
estimate for u sufficiently smooth: 

(3.5) ||v(x, t) - u(x, t)|| < chr 0 < t < T, 

where c depends only on u and T. 
We consider the operator 

(3.6) L=-ua a3 ax ax3' 
where u is the solution of (1.1). Now for v E W2r-'(0, 1), 1-periodic, 

(3.7) (Lv, v) = 
I I 

uxv2 dx < I2 UXI1L-(OI)1VI1, t > 0. 2 ~~~2 

Thus we have 

LEMMA 3.1. Let u be the solution of (1.1), assumed to be sufficiently smooth; then 
there exists a unique function w: [0, T] -- Shr satisfying 

(3.8) {(w, + uwx + wxxx, X)= 0, VX E Sh, t E (0, T], 

Moreover, there exists a constant c, independent of h, such that 

(3.9) IIU - W|L-(O,T;L2(0,I)) < chr. C: 

Proof of Theorem 2.1. We first consider the existence of a solution Vh to (2.5). Let 
(4 },L lbe a basis of S1 . We have 

N 

Vh(X, t) =2 Y,(t)Oj(X). 
j=1 

Using this, (2.5) is reduced to an initial value ODE problem 

Y f(Y), Y= {Y,...YN}. 

Using (2.3a) and (2.3b), it can be shown easily that f is continuous. Moreover, by 
letting X = vh in (2.5), by periodicity we obtain 
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hence 

(3.10) IlVh(t)|| =||IPU?|| t 2 O . 

Now from (2.3b) 

1lVh(t)1L??(Oj) S< ch12 1/2Vht(0)l = ch- 1/21lpUOII; 

hence a unique solution vh(t) exists for t > 0. 
Now let w be defined by (3.8). Let e = Vh- w and = u - w. From (2.5) and 

(3.8) we have 

(3.11) (et + exxx X) = (uwx - 
VhVhx, X) 

(-wex + Owx - eex- ewx, X), VX E Sh, t > 0. 

Letting X = e, by periodicity we have 

(3.12) 2 dt ||e(t)ll2 =-1(wx(t), [e( t)] 2) + (wx(t)O(t), e(t)) 

< CIIWX(t)ILx(Oj){ll9(t)ll + l!e(t)112} 

where we have used the Schwarz and arithmetic-geometric mean inequalities. Now 
from (2.3b) we have VX E Shr, 

(3.13) IWX(t)llLo(O,1) II|UX(t)llL(O01) +i Uf (t) - XxIIL(O,1) +IIXX - WX(t)|IL(OL(1) 

<|UJX(t)llL(o0I) + llux(t) - XxllL-(O,1) + ChA312llx - w(t)ll 

< llUX(t)llLo(O,j) + llUX() - XxIIL?(O,I) 

+ ch-3/2{ llu(t) - 
xll + |lu(t) - w(t)J|} 

Now, from (2.1), (2.2) and using (3.9), we get 

(3.14) |lWX(t)IIL (O,I) < |UX(t)llLO(0,1) + chI 'lull wO(O.I) 

+chr-3/2llullw2(o01) + chr-3/2 t > O. 

Hence, since r > 4, we have 

(3.15) IlWxIIL(O,T;Lo(O,I)) < c = c(u, T). 

Returning to (3.12), we obtain 

dtlle(t)ll2 - clle(t)l1 cllO(t)1 2. 

The last inequality yields via Gronwall's Lemma that 

(3.16) llellL'(o,T;L2(O,I)) < C(llOllL2(0 T; L2(o,l)) + |le(O)II), 
where c depends only on u and T. The proof of the theorem now follows by the 
triangle inequality, (2.4), (3.9), and [12, Lemma 2.4]. 0 

We now turn to the proofs of the error estimates for the fully discrete schemes. To 
prove Theorems 2.2 and 2.3 we shall compare, for each n, e.g., Un with an 
appropriate function uh(nk) in Sh. It turns out that the solution Vh of the semidiscre- 
tization (2.5) may not be suitable as such a comparison function since various 
necessary estimates of norms of some of its higher time derivatives seem hard to 
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obtain. We shall use instead Uh, a suitable quasi-interpolant of u, defined for 

(x, t) E [O, 1] X [O, T] by 
N 

(3.17) Uh(X, t) 2 u(Ih, t)I1(x), 
j= I 

where {1j7= is a suitably chosen basis of Sh, constructed as follows (cf. e.g. [12]). 
Let = X*r (the r-fold convolution), where X is the characteristic function of 

[-2, 2] and let, for some nonnegative integer s and constants dj, 4(x) 

= -s -d(x -j). Then define for 1 j < N Fj(x) to be the restriction to [0, 1] of 
the function >2EZ :j+?N(X). It is then well known, cf. e.g. [12, Lemma 2.4], that if the 

dj are suitably chosen, it follows that 

(3.18) -IUh(t) u(t)JI H chr a t 0 < t < T, 

holds. We collect all additional results concerning Uh that will be needed in sequel in 
the following 

LEMMA 3.2. Suppose u, the solution of (1.1), is sufficiently smooth. Then, for h 
sufficiently small, there exists a constant c, independent of h, such that 

(3.19) (Uht + UUhx + Uhxxx, X) ((t),X), VX E Sh, 0 tT, 

where 

(3.20) jj+|jL-(0,T;L (0,1) < h 
Moreover we have the following bounds (with Dt/ = W/at'): 

(3.21) jjDt'uhjjL-(,T;L2(0,l)) c, i = 0,9192939 

(3.22) 1 1DtUh I IL-(o,T; W,,(O, )) < c i =09 1. 

Proof. If the "truncation error" +(t) is defined by (3.19), then (3.20) follows from 
Lemmas 2.2 and 4.2 of [12]. Since the quasi-interpolation operator commutes 
with time differentiation, (3.21) and (3.22) follow from (3.18), (2.1), (2.2) and 

(2.3a,b). C: 
It can be seen that the exponent r in (3.20) may be raised to the (superconvergent) 

value v = 2r - 2 with a special choice of the basis {kiDj= as is done in [12]. Here 
we only need that 114'I be of O(h r) It is also not hard to see that an alternative 
proof of Theorem 2.1 could have been given in which Vh would have been compared 
with uh instead of w, the solution of (3.8). 

Proof of Theorem 2.2. We shall first establish the rate of convergence estimates; so 
assume a sequence {Un'}=0 C Sh satisfying (2.6) exists. Letting x = Un+ 1/2 in (2.6), 
we have by periodicity 

(3.23) 2k {IIUn+?12 -IIUn12 } = -(Un+12Un+12 + un+A12, un+1/2) = 0 

hence 

(3.24) I Unll 
- II U0II9, n = O, . -J- 
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Let Uh be defined by (3.17). From (3.19), putting q(t) = uh(t)- u(t), we have 

(3.25) (un+i/2 + I Un+ Un+1 + UnUnJ + UnXj2 , X 

= (jvn+?1/2+![u in+q ]x) X E S ? uOn nJ-I 

With tn = un-Un, n = 0,... ,J, a simple calculation using (3.25) and (2.6) gives, 
for X E Sh, 

(3.26) (atn + 
xn'x,12 

x) = (au + U'+1'2, X) - (aun + un)1'2, x) 

- (un+1/2 - a8n xn) - (Un+1/2Un+1/2, X) 

2(uh Uhx + Uhnu7n x) - (cn x) 

- 
(p11 + 8n - n x) 

_(n+ 11/21nn 1/2 + Un + 1/2xn+ 1/2 X) 

where we have set 

p'7 = un+1/2 auh n ln+ 1/2 + I(Unlxqn + Un+l?qn+1) 

and 

4 - uh[uhx - uhxy 

Letting X = ii? 1/2 in (3.26), we have by periodicity 

(3.27) = 1 || 2k(pn + 8n - En n+?1/2) - k(un+1/2, [gn1/2 

k 1{ lls+ 1112 + jjDn12 + 1pnI12 + 11n,12 + 11 ln2} 

+ k 
IUn+1/2 { n+I 112 + jjgni12)} 

2 hx 1 
L-(O,Il 'I I tIIJ 

Now, using (3.20), (3.22) and (3.18) we conclude that 

(3.28) max < 
< chr. 

0< <J- 1 

Using (3.38) and (3.22) in (3.27), we get for some constants cl, c2 independent of h 
and k 

)1~+j2 )1~J2 
(3.29) (1 - clk) I _'' - (1 + c1k)l'tlI 

< c2k{fp 2+,nl2+ h 2r} 0 n < -1 

from which it follows that 

jj~nI12< c 1 k n ( 
I c k p(l n| I -j 112 + II8 n- I j1JI2 + h2r) 

+ (I + c k )nll ' 112 

provided 0 < 1-c, k < 1. 
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Now, since 

( + clk I ( 1+ck e 2c,T 0< jsn 

we have, using (3.18) and (2.4), that 

(3.30) ljnl2 < c{k ; (Ilp2ll + l11ll 2) + h2r} 

From above, 

pn Un+1/2 - aUh 

=- Ij2 ? k[(n + I)k-s][nk-s]Uhtt(X, s)ds. 

Hence 

pnll j(n? 1)k 1[(n + I)k - s][nk - SIlIIUh,,,tl ds 

{ k5 }1/2 {(n? 1)k1 112 ds 1/2 

s 2k (30 i)i1luhttt ds) 

Thus 
n- J-1 n-I 

2 (j+ i)k? || ds < Ck4IUflL2(O,T;L2(o ) 

j=O j=O jk 

Also 

^n = un+ 1 -Un] [Unhx nh 

4 {( Uht(x, s) ds) (n Uhtx(x, s) ds}. 
k ~~~~~~k 

Now 

SUp 18nl < k 211Uh t IIL'(0,T; Lo(O,1))IIUhtxIIL'(0T;L'(0,l))i 0 < n < J I1. SU 
- I))x 0- 

n - 1 

Thus 

n-1 

(3.32) k 2 ||8j?1 < c k 41Uht?ll,t T;1t-(()))lUhtxllL-(O,T;L-(O,l))- 
J=0 

Using (3.31) and (3.32) in (3.30), it follows from (3.21) and (3.22), that, for some 
constant c = c(u, T), 

(3.33) ?j~njj < c{k2 + h'}, 0 < n < J. 

Moreover, u - U = Un - un + un - Un gives 

max c- U c{h + k2} 

for some constant c independent of h and k. 
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We shall next prove the existence of a sequence {U'})=0 satisfying (2.6). For this, 
we shall use the following variant of the well-known fixed point theorem of Brouwer 
(cf. [11, pp. 164-166]). 

LEMMA 3.3. Let H be a finite-dimensional Hilbert space with inner product (, )H 
and norm 11 II H. Let the map g: H -- H be continuous. Suppose there exists a > 0 such 
that (g(Z), Z)H > O for all Z with II Z II H = a. Then there exists Z* E H, I IZ* II H < a 
such that g(Z*) = 0. D 

The argument of existence of {Un}%=0 proceeds in an inductive way. Obviously 
U0 exists. Moreover assume (UJ exists. 

For Z E Sh, define g: Sh -, Sh by 

n k kr 
(3.34) (g(Z), X) = (Z - 2U , x) + 4 (ZZX X) + 2(Zxxx, X), VX e Sh. 

Such a map exists by the Riesz representation theorem; the fact that g is 
continuous follows easily from (2.3a) and (2.3b). Furthermore, by periodicity, letting 

X = Z 

(g(Z), Z) = (Z - 2U n Z) 2||Z||{||Z| - 211Unll} I>- Z||{||Z|- 2||U 11} 

from (3.24). Letting a > 211 U0 II, we deduce the existence via Lemma 3.3 of a 
Z* E Sh such that g(Z*) = 0. Letting Un+ = Z*- Un, we get from (3.34) that 

(Un+- U nnX) + k(U+1/2U"n+1/2 + Un1/2', X) = 0, VX E Shr, 

proving the existence of Un+ 1. 
For uniqueness, suppose that Vn+ I E Sh satisfies 

(3.35) (avn + Vn+1'2VJn+1'2 + Vn+1/2, X) = 0, VX E Sr. 

Letting E' = U' - V', i = n, n + 1, from (2.6) and (3.35) we have for X E Sh, 

(3.36) (aE" + E x"'2 X) 
= (En+ 1/2Exn+ /2 - Un+ 1/2En+ 1/2 - Un+ l/2En+ 1/2, X) 

LettingX = En+1/2 in (3.36), 

En+ 1112 -E2 = 1k(Un?1/2 [En+ 1/2]2) 

k|UXn+ 1/2lL( Iln + I/ 2112 

k {1Un+ +| UnX+ 1/2 - UX 1/2 L(O.)} {11 1112 

< c{k + khr-3/2 + k3h-3/2}{lEn?II 2 +IIE"2} 

from (3.22), (3.33), and (2.3b). 
Hence, for k, kh- 1/2 sufficiently small, we get 

(3.37) II~~~~~~|E n+ I 
II.< XIIlEnll, 

where 

(3.38) {9=1I + ck + ck3h-3/2 1/2 
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Now taking VW = U', we see that En+l 0, hence uniqueness follows. Obviously 
the condition "kh- 1/2 sufficiently small" may be replaced in the above proof by the 
requirements that k be sufficiently small and kh 3/4 remain bounded as k, h - 0. 
D 

Before proceeding with the proof of Theorem 2.3, we motivate the construction of 
(2.10). For this, let G: Sh- Sh' be defined by 

(G(k(), X) - , X)- 2 + 24UJL1 +[Qj2, xX) 

+2 (fxx [U,, xxx () I h X ES 

Such a map exists by the Riesz representation theorem and is continuous. For 
z E Shr, the Gateaux derivative of G in the direction 4 evaluated at z is given by 

(6[z](0), x) = (kP, x) -4 (4z, xx) - + x) 2 xx X), VX E Sh. 

Thus, given U0 +1, we define the sequence of Newton iterants { L)j+1 }jj 0l by 

"+,,(CUn+1 Unj), X) - -(G(Ujn )), X), VX E Sh, 0 <j jn+ 1, 
which is equivalent to (2.10). 

Proof of Theorem 2.3. We begin by making the following assumption: Let C*-,, 
C* 2 be nonnegative constants independent of h and k, 

Induction Hypothesis I (on n). 
(a) UJ' exists uniquely, 0 < i < n, 
(b) 11U' - I < C*{k2 +hr} i < n, 
(c) C* = Ck + (1 + Ck)Ct1 + CkCi> 20 <i n, 

where the constant C, to be suitably chosen later, is independent of n, h, k and the 
integers ji, 0 < i < n. Note that, since we have taken LI) = U0 = Pu?, (a)-(c) hold 
for n = 0. Moreover, if (c) holds for 0 < i < n, then it is easily shown that the 
constants {C1*})n0 are uniformly bounded by a constant C* independent of n, h, k 
and the integers j,. 

We next show that Un+1 defined by (2.7) exists uniquely. Its existence follows 
from Lemma 3.3 (just replace U' by Ljn in (3.34)). To show that Un+1 is unique, 
note first that by letting Vn = nIV, vn+ Un+1 in (3.35), we get from (3.37) 

(3.39) | - (n+l1|\ |un - Ln 

provided kh- 1/2 iS sufficiently small. Now suppose there exists Vn+ I E Sr satisfying 

(3.40) (n - ?jx) X-kn([jkn+1 + + n]2 Xx 

2 (J[ + xx],x x) =0, 1 X E Sh 

Letting en+ I= un+l-Vn+ 19 from (2.7) and (3.40) we get 

(3.41) (in + k A'nx+ ) = k ([jn+l + ojn]2,x) - 
k 

q n+1 + CTn]2, Xx 

k 
k(jTn+i n+L?R 'x I ? k 

([n+1]2x) 
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Letting X =n+ in (3.41), we get 

In+2 k.. = -8!iqn+1 + &n] 

Hence 

(3.42) II 
- +8i [Un?i + Yin]X L O(O,1)} 

Now 

[CT j LXL(O,l) |UhX + Unx L +(1[) ? [n+l _ un+fl L1 

+ ||0,1 [IUn+ II- Uh ] IIL) I 1[J Lo XL(0 I) 
un+1- Un+]L(,1 [Cbn - Un O, 

n- u n] + 11 [U uh xllLoo(O,I)- 

It follows from (3.22), (3.33), (3.39), (2.3b), and part (b) of Hypothesis I that 

(3.43) k ? QJ,h L?(O,1) < ck + ck3h372 + ck(k2 + hr)h-3/2(X ? I)C* 

Hence, e.g. for k and kh- 1/2 sufficiently small, the coefficient of l n+1 12 in (3.42) 
is positive, thus 0 1 0, proving uniqueness of uCn+ 1. 

Our next task is to show that the initial iterants U0j+ given by (2.9) and (2.9') are 
well defined and are good approximations to UCn+ . We first deal with the case 
n = 0. Note that by (2.7) and (2.8), U' = U1. Now UCo is given as the solution of a 
linear system of equations, with associated bilinear form 

d(O, X) = (O + kU??x + koxxx9 X), 01 X E Shr. 

Hence with k = x 

~ (+ - )A= I1+11 _ k (Uo 42) 2 ||t, [1 _ k 
0IIL'(0 

I 

and by (2.4), (2.3b) U01 exists uniquely (for k sufficiently small). Also, it is easy to 
show (with methods of estimation similar to those used in the proof of Theorem 2.2) 
that there exists a constant cl, independent of h and k, such that 

(3.44) UCo' - UC 1 || - U 1 | {k 2 + hr}. 

Also, for n > 1, we have 

jn+1 - j =n+ 1 - -[nU, n 

[jn+l - Un l] +[Un+l - un'] +[Unhl - 2un + un'] 

+2[Un - Un] -[un' - Un] + 2[Un - n] -[un- - Un- 

Now since IIUhn+ - 2un + Un-II < c/k2 by (3.21), it follows from (3.33), (3.39) and 
part (b) of Hypothesis I that 

(3.45) ||Un+1- U0Tn+1I ? {c + (A + 2)Cn* + Cn_Lj}(k2 + hr). 

We let 

(3.46) = c+ (X + 2)C* + C*_, n21. 
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Note that, for kh-1/2 sufficiently small, C-+ I is bounded above by a constant 
independent of h, k, ji, and n. Also note that the constant c in (3.46) does not 
depend on C of Hypothesis I, part (c). 

We next show that there exists a unique sequence (Un+1}j satisfying (2.10). For 
this, we give the following "internal" inductive proof. 

Induction Hypothesis II (on j). 
(a) U,,7' lexists uniquely for 0 ? m SJ i - 

(b) II U 'n+ ' - Un+ 11< c- +I(k + hr/2)2m+ I for 0 < m <IjiI 1 

It follows from (3.44) and (3.45) that Hypothesis II holds forj = 0. We now show 
that it also holds for]j + 1. Un+ I is given as the solution of a linear system of 
equations. The associated bilinear form is 

(D((>~~~ k) ( 
n+ I >x U + UjZn] 0, Xx ) r S 

Now 

(3.47)~~~~~~~~~~~~~~~~- (03, ) 11|,12 + k ([ CJn+ I + U;n]X92 (3.47) 
j 

+ 

|C(1- 8 |[n+i + L1n] L%(O,1)} 

From (3.43) and part (b) of Hypothesis II, we have 

(3.48) k [7J + xjn]X L-(Oj1) 

k kII[UIi - IIL-(O,1) + k [U + ]x L] (O, 1) 

? ckh nF3/2c-(k + h r/2)2 1 + ck + ck3h372 

+c(k3 + khr)hn3/2( + 1)C* 

Now since j > 0, it follows from (3.48) and (3.46) that, for k, kh- 1/2 sufficiently 
small, the coefficient of 11 I 2 in (3.47) is positive; hence +exists uniquely. 

Subtracting (2.7) from the left-hand side of (2.10), we get 

(3 49) ([U~n+I- T n+I] + k [CJn+Ill 
n 

xxI X (3.49) C +I 2 j+ I 
jn+i] 

9 

k([jn+l + CTn][Cjn+I Un+I 

k([Jn+l - n+Ii2 r 

Letting x 
- UJ1n+I 

n+Iin (3.49), we get 

n+I- n+1I || + k( [n+lI + Cln]X, [Jjn+il - Jn+ ]2) 

U - + [Jn - U *I]) 

Hence 

(3.50) l|J+ I - U(n+1 8 1 [Un+J 
? 

Y,]x LX(O,I)} 

rckh U+ - un+I 
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It follows from (3.48), (3.50) and part (b) of Hypothesis II that for k, kh-1/2 

sufficiently small 

(3.51) ||jn+1 - Un+1 ?ckh-3/2fn+?1 - Crn+1112 

(ckh- 3/2)2J+1?1jjCTn+1 - n+1112J+1 

[cjn+ Ikh-3(k + hr/2)12 YCn+(k + h 

Now, for k, kh-3/4 sufficiently small, cJn +I(k2h-3/2 + kh(r-3)/2) ? 1. Hence 

(3.52) n+- n+1 11 < c +l(k + h r/2)2'+ 
I 

completing the induction argument II. 
It remains to complete the induction argument I. We distinguish two cases. First 

assume that h r/2 < k. Then from (3.39), (3.45), (3.52) we obtain, since jn +1 2 1, 

(3.53) U 
I 

- 
I Un+ 

I 
- uTn+ i + ||U) - CTn n+ 

I 

X Cn*(k 2+ h r) + -+( r12 )2Jn+ 
I+ I 

c {(X + 4kA + 8k)Cn* + 4ck + 4kCn*_I}(k2 + hr) 

where the c occurring in the right-hand side of the above is independent of C of part 
(c) of the Induction Hypothesis I. Now, it can be arranged a priori, in view of (3.38), 
that k and kh-3/4 be taken sufficiently small so that for some c independent of C we 
have 

(3.54) X < 1 + ck. 

Hence (3.53) becomes 

(3.55) || Un+1 - QOn+1j' i?| [ck + (1 + ck)Cn* + 4kCn,_I](k2 + h r) 

which, with the choice C = max(c, 4) defines Cn*+ I satisfying part (c) of the Induc- 

tion Hypothesis I and completes the inductive step. 
If now it is the case that k < hr/2, we obtain, by (3.51) for 0 <j < jn+ , that 

(3.56) TJ n+1 -0 n+1 1 ?n+ lk21- i(k + hr/2)21+ 1[2cen+lh(r-3)/2]2'- 
1 

Since r 424, 2Cn+ Ih(r-3)/2 can be made less than or equal to 1 by choosing 
eventually h sufficiently small. So we either revert to the previous case h r2 < k or 
we obtain, for 0 <i < jn+ l, that 

(3.57) - -U+ <5i 2n+Ik I(k + h 

Hence, by similar estimates to those used in the derivation of (3.53) we see, since 

jn+I 1, that 

(3.58) Il -n+1- ? xc:(k2 + hr) + k2''+'- +(k +r/22Jn+l+ 

? (XCn* + 2k-n+,)(k2 + hr) 

<[(A + 2kX + 4k)Cn* + 2ck + 2kC*_1](k2 + hr). 

Since (3.54) may have been arranged a priori to hold by taking k and kh-3/4 

sufficiently small, we are led again to a choice of C and the completion of the 
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inductive step. (Note that a hypothesis of the form k > h r/2, for all k, h sufficiently 
small, is not restrictive and certainly gives a nonempty interval of time steps k that 
also satisfy k < ahh3/4 for any a > 0. Hence,if the "boundedness below" assumption 
kh-r/2 > 1 is also imposed in the statement of the theorem,the inductive step is 
completed just by (3.53)-(3.55).) 0 

Laboratorio de Computacao Cientificas-CNPq 
Av. Wenceslau Braz 71 
22290 Rio de Janeiro-R. J., Brazil 

Department of Mathematics 
The University of Tennessee 
Knoxville, Tennessee 37996 

Department of Mathematics 
The University of Tennessee 
Knoxville, Tennessee 37996 

1. K. ABE & 0. INOUE, "Fourier expansion solution of the Korteweg-de Vries equation," J. Comput. 

Ph-vs., v. 34, 1980, pp. 202-210. 
2. M. E. ALEXANDER & J. LL. MORRIS, "Galerkin methods applied to some model equations for 

nonlinear dispersive waves," J. Comput. Phys., v. 30, 1979, pp. 428-451. 
3. J. BONA & R. SCOTT, "Solutions of the Korteweg-de Vries equation in fractional order Sobolev 

spaces," Duke Math. J., v. 43, 1976, pp. 87-99. 
4. J. BONA & R. SMITH, "The initial value problem for the Korteweg-de Vries equation," Philos. Trans. 

Roy. Soc. London Ser. A, v. 278, 1975, pp. 555-604. 
5. B. FORNBERG & G. B. WHITHAM, "A numerical and theoretical study of certain nonlinear wave 

phenomena," Philos. Trans. Roy. Soc. London Ser. A, v. 289, 1978, pp. 373-404. 
6. I. S. GREIG & J. LL. MORRIS, "A Hopscotch method for the Korteweg-de Vries equation," J. 

Comput. Phys., v. 20, 1976, pp. 64-80. 
7. P. D. LAX, "Almost periodic solutions of the Korteweg-de Vries equation," SIAM Rev., v. 18, 1976, 

pp. 351-375. 
8. H. SCHAMEL & K. ELSASSER, "The application of the spectral method to nonlinear wave 

propagation," J. Comput. Phys., v. 22, 1976, pp. 501-5 16. 
9. F. TAPPERT, "Numerical solutions of the Korteweg-de Vries equation and its generalizations by the 

split-step Fourier method," in Nonlinear Wave Motion (A. C. Newell, Ed.), Lectures in Appl. Math., Vol. 
15, Amer. Math. Soc., Providence, R.I., 1974, pp. 215-216. 

10. R. TEMAM, "Sur un probleme non lineaire," J. Math. Pures App!., v. 48, 1969, pp. 159-172. 
11. R. TEMAM, Navier-Stokes Equations: Theory and Numerical Analysis, rev. ed., North-Holland, 

Amsterdam, 1979. 
12. V. THOMtE & B. WENDROFF, " Convergence estimates for Galerkin methods for variable coefficient 

initial value problems," SIA M J. Numer. Anal., v. 1 1, 1974, pp. 1059-1068. 
13. A. C. VLIEGENHART, "On finite-difference methods for the Korteweg-de Vries equation," J. Engrg. 

Math., v. 5, 1971, pp. 137-155. 
14. L. B. WAHLBIN, "A dissipative Galerkin method for the numerical solution of first order hyperbolic 

equations," in Mathematical Aspects of Finite Elements in Partial Differential Equations (C. de Boor, Ed.), 
Academic Press, New York, 1974, pp. 147-169. 

15. R. WINTHER, "A conservative finite element method for the Korteweg-de Vries equation," Math. 
Comp., v. 34, 1980, pp. 23-43. 

16. N. J. ZABUSKY, "Computation: Its role in mathematical physics innovation," J. Comput. Phys., v. 
43, 1981, pp. 195-249. 

17. N. J. ZABUSKY & M. D. KRUSKAL, "Interaction of "solitons" in a collisionless plasma and the 
recurrence of initial states," Phys. Rev. Lett., v. 15, 1965, pp. 240-243. 


	Cit r4_c4: 
	Cit r5_c5: 
	Cit r12_c12: 


